A Class of Non Invertible Matrices in GF (2) for Practical One Way Hash Algorithm
نویسندگان
چکیده
In this paper, we describe non invertible matrix in GF(2) which can be used as multiplication matrix in Hill Cipher technique for one way hash algorithm. The matrices proposed are permutation matrices with exactly one entry 1 in each row and each column and 0 elsewhere. Such matrices represent a permutation of m elements. Since the invention, Hill cipher algorithm was used for symmetric encryption, where the multiplication matrix is the key. The Hill cipher requires the inverse of the matrix to recover the plaintext from cipher text. We propose a class of matrices in GF(2) which are non invertible and easy to generate.
منابع مشابه
A NEW SECRET SHARING SCHEME ADVERSARY FUZZY STRUCTURE BASED ON AUTOMATA
In this paper,we introduce a new verifiable multi-use multi-secretsharing scheme based on automata and one-way hash function. The scheme has theadversary fuzzy structure and satisfy the following properties:1) The dealer can change the participants and the adversary fuzzy structure without refreshing any participants' real-shadow. 2) The scheme is based on the inversion of weakly invertible fin...
متن کاملSome Cryptanalytic Results on Zipper Hash and Concatenated Hash
At SAC 2006, Liskov proposed the zipper hash, a technique for constructing secure (indifferentiable from random oracles) hash functions based on weak (invertible) compression functions. Zipper hash is a two pass scheme, which makes it unfit for practical consideration. But, from the theoretical point of view it seemed to be secure, as it had resisted standard attacks for long. Recently, Andreev...
متن کاملLightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives
Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number ...
متن کاملLightweight MDS Generalized Circulant Matrices (Full Version)
In this article, we analyze the circulant structure of generalized circulant matrices to reduce the search space for finding lightweight MDS matrices. We first show that the implementation of circulant matrices can be serialized and can achieve similar area requirement and clock cycle performance as a serial-based implementation. By proving many new properties and equivalence classes for circul...
متن کاملLightweight MDS Generalized Circulant Matrices
In this article, we analyze the circulant structure of generalized circulant matrices to reduce the search space for finding lightweight MDS matrices. We first show that the implementation of circulant matrices can be serialized and can achieve similar area requirement and clock cycle performance as a serial-based implementation. By proving many new properties and equivalence classes for circul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1210.1925 شماره
صفحات -
تاریخ انتشار 2012